When and how do seizures kill neurons, and is cell death relevant to epileptogenesis?
نویسندگان
چکیده
The effect of seizures on neuronal death and the role of seizure-induced neuronal death in acquired epileptogenesis have been debated for decades. Isolated brief seizures probably do not kill neurons; however, severe and repetitive seizures (i.e., status epilepticus) certainly do. Because status epilepticus both kills neurons and also leads to chronic epilepsy, neuronal death has been proposed to be an integral part of acquired epileptogenesis. Several studies, particularly in the immature brain, have suggested that neuronal death is not necessary for acquired epileptogenesis; however, the lack of neuronal death is difficult if not impossible to prove, and more recent studies have challenged this concept. Novel mechanisms of cell death, beyond the traditional concepts of necrosis and apoptosis, include autophagy, phagoptosis, necroptosis, and pyroptosis. The traditional proposal for why neuronal death may be necessary for epileptogenesis is based on the recapitulation of development hypothesis, where a loss of synaptic input from the dying neurons is considered a critical signal to induce axonal sprouting and synaptic-circuit reorganization. We propose a second hypothesis - the neuronal death pathway hypothesis, which states that the biochemical pathways causing programmed neurodegeneration, rather than neuronal death per se, are responsible for or contribute to epileptogenesis. The reprogramming of neuronal death pathways - if true - is proposed to derive from necroptosis or pyroptosis. The proposed new hypothesis may inform on why neuronal death seems closely linked to epileptogenesis, but may not always be.
منابع مشابه
Suppression of epileptogenesis-associated changes in response to seizures in FGF22-deficient mice
In the developing hippocampus, fibroblast growth factor (FGF) 22 promotes the formation of excitatory presynaptic terminals. Remarkably, FGF22 knockout (KO) mice show resistance to generalized seizures in adults as assessed by chemical kindling, a model that is widely used to study epileptogenesis (Terauchi et al., 2010). Repeated injections of low dose pentylenetetrazol (PTZ) induce generalize...
متن کاملEffect of repeated transcranial magnetic stimulation during epileptogenesis on spontaneous activity of hippocampal CA1 pyramidal neurons in rats
Introduction: Considering the antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS), the effect of rTMS applied during amygdala kindling on spontaneous activity of hippocampal CA1 pyramidal neurons was investigated. Materials and Methods: A tripolar electrode was inserted in basolateral amygdala of Male Wistar rats. After a recovery period, animals received daily kindl...
متن کاملاقدامات فوری در مارگزیدگی
EXTRACTAnyone who may one day be faced with an injured snake bitten and be forced to take care of him. If this person does not know how to treat these patients consciously and quickly, may cause further injury or even death in them. Notice a snake- bitten history: He had gone with his friends for circulation, when he saw a snake, try to take it. But his hands being bitten by snake. His friend...
متن کاملHippocampal Expression of Connexin36 and Connexin43 during Epileptogenesis in Pilocarpine Model of Epilepsy
Background: Gap junctions (GJs) provide direct intercellular communications that are formed by hexameric protein subunits, called connexin (Cx). The role of Cxs in epileptogenesis has not received sufficient attention. Hippocampus with critical function in epileptogenesis has a wide network of GJs. We examined the protein expression levels of hippocampal Cx36 (the prominent Cx present between G...
متن کاملPrimary and Secondary Epileptogenesis: Seizure-Induced Neuron Death and Synaptic Reorganization
Extensive data involving several animal models of temporal lobe epilepsy highlight synaptic alterations that likely act synergistically during acquired epileptogenesis. Most of this research has utilized experimental models in which intense electrical activity in adult animals, primarily involving status epilepticus, causes variable neuronal death in the hippocampus and other temporal lobe stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in experimental medicine and biology
دوره 813 شماره
صفحات -
تاریخ انتشار 2014